Allosteric Properties of KCNQ1 (Kv7.1) Channel Gating Detected by Voltage Clamp Fluorometry

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-dependent conformational changes in human Ca(2+)- and voltage-activated K(+) channel, revealed by voltage-clamp fluorometry.

Large conductance voltage- and Ca(2+)-activated K(+) (BK(Ca)) channels regulate important physiological processes such as neurotransmitter release and vascular tone. BK(Ca) channels possess a voltage sensor mainly represented by the S4 transmembrane domain. Changes in membrane potential displace the voltage sensor, producing a conformational change that leads to channel opening. By site-directe...

متن کامل

Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels.

KCNQ1 (Kv7.1) is a unique member of the superfamily of voltage-gated K(+) channels in that it displays a remarkable range of gating behaviors tuned by coassembly with different β subunits of the KCNE family of proteins. To better understand the basis for the biophysical diversity of KCNQ1 channels, we here investigate the basis of KCNQ1 gating in the absence of β subunits using voltage-clamp fl...

متن کامل

Voltage clamp fluorimetry studies of mammalian voltage-gated K(+) channel gating.

VCF (voltage clamp fluorimetry) provides a powerful technique to observe real-time conformational changes that are associated with ion channel gating. The present review highlights the insights such experiments have provided in understanding Kv (voltage-gated potassium) channel gating, with particular emphasis on the study of mammalian Kv1 channels. Further applications of VCF that would contri...

متن کامل

Allosteric Voltage Gating of Potassium Channels I

Activation of large conductance Ca(2+)-activated K(+) channels is controlled by both cytoplasmic Ca(2+) and membrane potential. To study the mechanism of voltage-dependent gating, we examined mSlo Ca(2+)-activated K(+) currents in excised macropatches from Xenopus oocytes in the virtual absence of Ca(2+) (<1 nM). In response to a voltage step, I(K) activates with an exponential time course, fol...

متن کامل

Allosteric Voltage Gating of Potassium Channels II

Large-conductance Ca(2+)-activated K(+) channels can be activated by membrane voltage in the absence of Ca(2+) binding, indicating that these channels contain an intrinsic voltage sensor. The properties of this voltage sensor and its relationship to channel activation were examined by studying gating charge movement from mSlo Ca(2+)-activated K(+) channels in the virtual absence of Ca(2+) (<1 n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biophysical Journal

سال: 2012

ISSN: 0006-3495

DOI: 10.1016/j.bpj.2011.11.1819